Quadratic interior-point methods in statistical disclosure control
نویسنده
چکیده
The safe dissemination of statistical tabular data is one of the main concerns of National Statistical Institutes (NSIs). Although each cell of the tables is made up of the aggregated information of several individuals, the statistical confidentiality can be violated. NSIs must guarantee that no individual information can be derived from the released tables. One widely used type of methods to reduce the disclosure risk is based on the perturbation of the cell values. We consider a new controlled perturbation method which, given a set of tables to be protected, finds the closest safe ones – thus reducing the information loss while preserving confidentiality. This approach means solving a quadratic optimization problem with a much larger number of variables than constraints. Real instances can provide problems with millions of variables. We show that interior-point methods are an effective choice for that model, and, also, that specialized algorithms which exploit the problem structure can be faster than state-of-the art general solvers. Computational results are presented for instances of up to 1000000 variables.
منابع مشابه
Solving L1-CTA in 3D tables by an interior-point method for primal block-angular problems
The purpose of the field of statistical disclosure control is to avoid that no confidential information can be derived from statistical data released by, mainly, national statistical agencies. Controlled tabular adjustment (CTA) is an emerging technique for the protection of statistical tabular data. Given a table to be protected, CTA looks for the closest safe table. In this work we focus on C...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملInterior Point Methods for Optimal Control of Discrete-time Systems
We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discrete-time optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete time linear-quadratic regulator problem with mixed state/control constraints, and show how it can b...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Manag. Science
دوره 2 شماره
صفحات -
تاریخ انتشار 2005